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An athlete sitting on a bicycle seat can produce about 100 watts 
of useful power on a long-term basis.  After 10 hours, the athlete 
produces 1,000 watt-hours, or one kilowatt-hour (kWh).  While 
some people balk at the notion of having to pay (say) 8.5 cents 
rather than their present 8 cents for that kilowatt-hour, what 
would they have to pay the athlete for ten hours of hard labor?  
And what would it cost for that kWh if we had to do nothing 
more than feed the athlete? 

All in all, the US (of 310 million people) uses about 100 
exajoules (EJ, equal to 1018 joules) per year from all sources and 
for all uses.  On a year-round average basis (3.16 × 107s), then, 
we consume 10.2 kW per capita.  Due to the recession this figure 
is down 7% from 1997 when we used 107 EJ, amounting to 10.9 
kW per capita.  All in all, each of us has the energy equivalent of 
over 100 slaves working for us night and day. 

Coal, oil, natural gas, uranium, firewood, hydro, wind, and 
solar all provide energy that is far cheaper than human—or 
indeed, animal—labor.  It is no wonder that energy drives 
everything we do. 

Information Source 

The best source for US energy use is the Energy Information 
Administration (EIA) of the Department of Energy (DOE), 
especially the Annual Energy Review (AER), a PDF file of 446 
pages length [1].  It is a goldmine of energy information. 

Unfortunately, the AER uses a mélange of units.  Primary 
thermal energy is expressed in BTU, and electrical energy 
produced is in kWh.  For example, the AER says that we used 
38.89 quadrillion BTU (2009) to produce electricity.  Another 
table says we generated 3,953 billion kWh of electricity.  
Translating to joules, we find that 41.03 EJ of heat produced 
14.23 EJ of electrical energy, implying an overall efficiency of 
34.7%.   

We also find that hydropower consumed 2.682 quadrillion 
BTU and produced 272.1 billion kWh.  But hydropower stations 
do not use heat as the energy source!  Translating again to joules, 
we find 2.83 EJ of “heat input” to produce 0.98 EJ of electrical 
energy, implying an efficiency of 34.6%.  The actual efficiency 
of hydropower stations is in excess of 90%, so where did that 
BTU figure come from? The EIA simply invents an as-if number 
to represent how much thermal energy would have to be used to 
produce the 272.1 billion kWh if heat engines instead of 
hydropower stations were used. 

A table in the Appendix of AER 2009 has “Heat Rates for 
Electricity,” which values are reciprocal efficiencies expressed 
in BTU/kWh.  For example the 2009 value for fossil-fueled 
plants gives 9,854 BTU as being required to produce 1 kWh.  
Given that 1 BTU = 1,055 J, this says that 10.4 MJ of heat was 
required to produce 3.6 MJ of electricity; the efficiency is 34.6%.  

Historical Perspective 

In the early days of the nation, firewood provided the majority of 
the energy consumed.  Of course, there was some water power, 
and there were draft animals.  Undoubtedly, there was some coal 
usage here and there, but the country had an abundance of 

trees—too many, in fact, because the forests took up land the 
settlers wanted for farming.  There are records of firewood 
consumption dating back to the days of Benjamin Franklin, as 
well as records of coal consumption while the industrial age 
progressed.  Figure 1 shows the historical energy usage since 
1635. 

 

Figure 1: US energy consumption 1635-2007 from 
various sources, and the total.  Notice the logarithmic 
scale.  We use about 200,000 times as much energy as did 
the country shortly after Pilgrims arrived at Plymouth 
Rock. 

In Figure 1, we see that the nation has increased its energy 
consumption by a factor of about 200,000 since 1635.  But what 
about energy consumption per capita?  We can construct a graph 
of historical per-capita energy consumption, as shown in Figure 
2. 

 

Figure 2:  US per-capita energy consumption expressed 
in year-round average kilowatts per US citizen since 
1850.  On a per-capita basis, we use about 3.1 times as 
much energy as did our pre-Civil War forefathers. 

By the middle of the 1800s, the railroad industry was thriving, 
and by 1900, the sources and uses of electricity began to expand, 
as did consumption of natural gas.  Meanwhile, efficiency was 
increasing on all fronts.  Woodstoves replaced fireplaces, whose 
best efficiency was around 9%.  Houses were insulated better.  
Lighting from candles and other open fires had been well below 
0.1% efficient.  The first steam engines were about 0.05% 
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efficient, and now combined-cycle power plants have recorded 
efficiencies as high as 60%, an improvement by a factor of 1,200.  
Accordingly, our per-capita consumption of energy has increased 
by a factor of only 3.1.  As University of Colorado Professor Al 
Bartlett has kindly reminded me, the energy consumed in the US 
is not necessarily the same as the energy consumed in behalf of 
the US.  Much of our manufacturing is done overseas.  (As well, 
much of our manufacturing within the US is of products that are 
exported.)  Still, most people you’ll ask will suppose that we use 
tens to hundreds of times as much energy per capita as our 
forebears. 

As an example of increasing efficiency, see Figure 3, which 
shows that the overall efficiency of the US electrical system from 
fuel to end use has increased from 21% in 1950 to 33% in 2009.  
Since most of our electricity is produced by heat engines (steam 
engines and gas turbines, primarily), the large inefficiency stems 
from the demands of the second law of thermodynamics.  Only 
about 7% of the electrical energy is lost in transmission and 
distribution. 

 

Figure 3: Overall electrical system efficiency since 
1950. 

Two aspects of energy are subject to the most rapid change.  The 
overall quantity of energy grows with population, which has 
approximately doubled since 1950s.  The other rapidly changing 
number is the increasing role of electricity.  Figure 4 shows that 
the fraction of our primary energy used for production of 
electricity has grown from 14% in 1950 to 41% at the present.  
Television was not terribly common in 1950, and all telephones 
were connected by wires.  “Radio” meant a handful of AM 
stations.  Most people had never heard the term computer, and 
the computers that existed were few and far between. 

Another factor in the growth of demand for electricity is air-
conditioning.  In the 1950s, movie theaters were often air-
conditioned to lure customers during hot summers.  Homes were 
rarely air-conditioned.   

Our cellphones, iPods, Kindles, Nooks, and the like require 
very little power to run themselves; however, the communication 
system that makes them work requires a tremendous amount of 
power.  There are hundreds of “data centers,” non-descript 
buildings here and there that handle all of the messages that are 
sent over wires and fiber-optical cables [removed comma] and by 
wireless communication.  Typically, these centers are designed to 
consume over a kilowatt per square meter of floor space for 
running the electronics, plus air-conditioning systems to keep the 

electronics from overheating.  Data centers that consume many 
tens of megawatts are common. 

 

Figure 4: In 1950, about 14% of our primary energy 
went into production of electricity.  This figure has 
grown to 41%. 

The Present 

Eighty-five percent of our energy comes from coal, oil, and 
natural gas (See Figure 5).  Petroleum (40%) is used almost 
exclusively for transportation, and nuclear energy (8%) is used 
exclusively for producing electricity, as is the majority of coal. 

 

Figure 5:  US Energy Sources, 2007.  Notice that 85% of 
our energy comes from coal, oil, and natural gas.   

The designation Renewable in Figure 5 refers to hydroelectric 
power (35% of the renewable fraction), firewood (24%), other 
biofuels (20%), wind (9%), waste (6%), geothermal (5%) and 
solar (1%).  Of the solar contribution, the solar/thermal/electric is 
about four times as large as the solar/photovoltaic contribution.  

Figure 6 shows that the largest source of electrical energy is 
coal (50%) followed by nuclear fission (20%) and gas (19%).  Of 
the renewables, the conventional sources (hydro, wood, waste, 
and geothermal) are responsible for 90%; wind and solar account 
for 10% of the renewable electricity, or 1% of all electricity.  
Note that if some magic source produced 100% of our electricity 
tomorrow, it would have only a minuscule effect on our 



consumption of petroleum, because oil is primarily used for 
transportation, not for producing electricity. 

 

Figure 6:  The sources of electrical energy, 2007.  
Hydropower is responsible for 66% of the renewable 
electricity, and 7% of all electricity. 

It is useful to know that when the total electrical consumption is 
averaged over all citizens, the per-capita consumption of 
electricity is about 1,300 watts.  That is, a city of 700,000 uses 
1,000 MW on the average to run its homes, factories, businesses, 
and everything else. 

Who uses all of that energy?  Figure 7 shows the eventual 
users of energy, whether by direct usage (such as natural gas 
burned in home furnaces) or by indirect usage, viz, from 
electricity whose sources have been properly allocated to the end 
user.  Roughly speaking, transportation and industry each 
consume almost one-third of the energy, while residences and 
commercial establishments each use one-fifth. 

 

Figure 7:  Consumption of US energy by sector. 

Physics 

All of the information except for population data above has come 
from The Annual Energy Review, and all of it is about how 
society obtains and uses energy.  It is now time to do—and to 
suggest—some calculations. 

Fuels 
Let us begin with the human.  Each of us has a daily intake of 

something like 2,000 food calories.  Each calorie is 4186.8 
joules, and a day is 84,600 seconds.  The fuel-input rate is 
therefore 96.9 watts, which can be rounded to 100 watts. 

A car travels at 60 miles per hour, and gets 30 miles per 
gallon.  We can calculate the fuel-input power from the 
consequent 2 gallons per hour, and obtain 77.8 kW (the 
equivalent of about 16 electric oven with every burner fully on. 

Batteries are not fuels, but they do store energy.  A new 12.6-
volt automobile battery stores about 60 ampere-hours of charge, 
hence the stored energy is about ¾ of one kWh.  In other words, 
the battery stores roughly a dime’s worth of electrical energy at 
utility prices. (How many coulombs?  How many joules?) 

Wind Turbines 

A horizontal column or air of cross-sectional area A and length L, 
traveling at speed v has kinetic energy  

 2 2 2(1/ 2) (1/ 2) (1/ 2)KE mv Vv ALv     (1)  

where  is the density and V is the volume of the column, given 
by AL.  Of course, we take A to be the cross-sectional area 2R  
swept out by the spinning blades of the wind turbine.  During 
some time interval /t L v , all of that energy sweeps past a 
chosen point, so the rate of energy arrival is 
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Equation (2) represents energy per unit time, but not power, 
because power refers to energy converted from one form to 
another.  The wind turbine converts some fraction called the 
power coefficient k to useful energy.  If the wind turbine 
converted all of the arriving energy, the air would stop, thereby 
blocking further air from reaching the turbine. 

The density of air is about 1.3 kg/m3.  Still, Equation 2 needs 
information about the behavior of real wind turbines.  Websites 
www.gewind.com and www.vestas.com provide actual 
performance curves representing power output versus wind 
speed.  Using the diameters given for the various products and a 
convenient wind speed (10 m/s), one can calculate that the power 
output is given closely in SI units by 

 2 3(2 / 3)P R v  (3) 

That is, power in watts is 2/3 of the product of the square of the 
radius in meters and the cube of the wind speed in meters per 
second. (How much power for a 100-m diameter turbine in 
10m/s wind?  …in a 5 m/s wind?) 

The performance curves, however, are more complicated.  
Below about 4 meters per second, the speed is too low to 
generate any power at all.  Above about 12-13 m/s (rather 
uncommonly high speeds), the power is constant (at the 
maximum power rating), a feat achieved by “trimming” the 
blades to decrease the efficiency.  Above 25 m/s the wind turbine 
is shut down entirely to keep it from self-destruction. 

There is an illusion that the blades of industrial-scale wind 
turbines turn slowly.  Indeed, their rate of rotation is low 
(typically about 15 revolutions per minute), but the speed of the 
tips of the blades is 6 or 7 times the wind speed, reaching 



NASCAR speeds.  (Tip speed for Vestas 1.8-MW, 90-m 
diameter turbine at 14.5 RPM?) 

The low rotation rate is generally incompatible with those of 
generators, so most wind turbines have gearboxes that increase 
the rotation rate by factors of 30 to 120 (depending upon the 
number of poles in the generator).  The gearboxes have shown 
themselves to be the weakest link in the machines. 

The most vexing problem with wind turbines is the extreme 
variability with wind speed as shown in Equation 3.  If the wind 
speed suddenly drops to half-value (say, from 10 m/s to 5 m/s), 
the power drops by 87.5%.  When the wind fraction of the power 
on the line is low, the utility merely treats the variations as the 
negative of the variations in load that they normally handle 
anyway.  Compensation is handled by “spinning reserve,” 
conventional power plants that are run at about half-power to 
compensate both decreases and increases in demand.  The more 
wind power there is on the line, the more spinning reserve is 
required, and that power is always more expensive than power 
from baseload units that produce full power 100% of the time. 

Spacing 

Because wind turbines extract kinetic energy from the moving 
air, turbines should not be placed closely behind one another.  
Moreover, turbulence from one turbine can be damaging to 
another.  Typically, turbines are placed about 7-10 diameters 
apart, but a new paper [2] says that 15 diameters is better.  But 
whatever the spacing, a simple rule emerges.  Since the power 
output is proportional to R2, doubling the diameter quadruples the 
power.  But doubling the diameter also requires that the turbines 
be placed twice as far apart—in each direction—thereby 
requiring four times the land area.  The power per unit land area 
is therefore independent of turbine radius.  Most very good wind 
farms produce about 12.5 kW/ha1 on a year-round average basis.  
(How many hectares to produce as much energy in a year as a 
large conventional 1,000-MW power plant produces?  How 
many square miles?) 

When winds are predominately from a certain direction, the 
turbines can be placed closer to one another, typically 3-5 
diameters apart on a side-to-side basis.  Wind “farms” thus 
designed can exceed the 12.5 kW/ha figure. 

Capacity Factor 

A 1-MW generator driven by a child’s pinwheel would produce 
no power at all, because the little toy couldn’t even turn the 
massive generator.  A 1-watt generator driven by a 100-meter 
diameter wind turbine could probably be arranged to produce 1 
watt all the time.  The capacity factor—defined as year-round 
average power divided by nameplate power—for these extreme 
cases would be 0% and 100%.  Obviously, the capacity factor is 
determined by the relative size of the generator compared to the 
size of the turbine. 

Wind systems these days are designed to have a capacity 
factor of about 35%; that is, a 2.0-MW unit is expected to 
produce 700 kW on a year-round basis. 

Hydropower 

While wind turbines extract kinetic energy from air, hydropower 
uses gravitational potential energy.  A mass M of water descends 
a height h, and converts potential energy Mgh in time t to work, 

                                                           
1 A hectare is 100 ares (100 m2), so 1 ha = 104 m2. 

turning a water turbine that turns a generator.  The overall 
efficiency  is about 95% in large hydropower stations.  Usually, 
one measures volume of water instead of its mass, so the power , 
namely work W per unit time, is 
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With the density of water being 1,000 kg/m3, and the efficiency 
taken at 90%, we obtain the equation in Si units 
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Illustrative problem:  Suppose a mass M were to descend from 
the altitude of a jet plane (say, 10,000 m), how large would M 
have to be (assuming 100% conversion efficiency) in order to 
evaporate one kilogram of water already at the boiling point?  
(Heat of vaporization = 540 kcal/kg = 2.26 × 106 J/kg.)  We’ll 
leave the exact arithmetic to the student; suffice it to say that M 
is approximately the mass of an 8-year old.   

Another one.  The state of Connecticut (land area = 12,549 
square kilometers) annually gets one meter of precipitation.  If a 
dam of 100 meters height were to be kept full, letting 
Connecticut’s precipitation go through the associated 
hydropower turbine at a sustainable rate, how much power would 
be produced?  Again, we’ll let the student do the exact 
arithmetic; the answer is roughly a third of the output of a single 
large conventional power plant. 

We can now see why hydropower generates only 7% of our 
electricity.  It takes massive flow of water descending from great 
height, and the number of such sites is limited. 

Solar/Thermal/Electric units 

Figure 8 is a photograph of part of a massive solar energy project 
in the Mojave Desert.  The parabolic reflectors concentrate 
sunlight onto a pipe through which an oil called Therminol flows.  
The heated Therminol is pumped through a heat exchanger to 
boil water to run a steam turbine, thence to generate electricity.  
The nine fields at Daggett, Kramer Junction and Harper Lake 
together generate 6.5 × 1011 watt-hours a year on a long-term 
average.  (What is the average power in watts?) 

 

Figure 8:  Solar/thermal unit (“Solar Energy Generating 
System,” SEGS) in Daggett, California. 



The Annual Energy Review lists solar/thermal/electric sources 
together with solar/photovoltaic, as Solar/PV.  In 2009, the total 
generation was given (to one significant figure) as 0.8 billion 
kWh, or 8 × 1011 Wh.  Therefore the Solar Energy Generating 
System (SEGS) units in the Mojave Desert are responsible for 
6.5/8 = 81% of the Solar/PV contribution. 

Biomass 

Drymatter (dry wood, grass, leaves, corn…) has a heat content of 
about 15 MJ/kg.  How much drymatter comes from how much 
land area?  It depends on many things, of course. 

Let us look at corn ethanol (alcohol made from corn).  AER 
2009 tells us that a bushel of corn yields about 2.75 gallons of 
ethanol.  Each gallon yields 28 MJ.  The gross heat of corn is 
said to be 0.392 million BTU per bushel.  Therefore 77 MJ in the 
ethanol comes from 414 MJ in the corn, an efficiency of 19%. 

In prime corn country, Iowa produces about 160 bushels of 
corn per acre.  In terms of energy, the gross heat content is 16.4 
MJ/m2 per year, or 0.52 watts (averaged around the year) per 
square meter of land.  That’s 0.1 watts of ethanol energy per 
square meter, with no heed paid to the energy required to do the 
farming and conversion to ethanol. 

Appendix 
The topics discussed in this paper are simple, but made 
complicated by the use of non-SI units.  Fortunately, the energy 
values found in AER 2009 are limited to the BTU and the watt-
hour, both with various prefixes.  The time unit is almost always 
either the second or the year.  AER 2009 does have some useful 
appendices about such matters as the heat content of some fuels. 

We presume that readers of The Physics Teacher know the 
Systéme International  prefixes.   Following are some calculable 
numbers that it is well to memorize: 
 1 day = 86,400 seconds 
 1 year = 3.16 × 107 s  10 Ms 
 1 year  = 8,760 hours 

Units for energy are actually defined in terms of the joule.  
Examples are: 
 1 BTU = 1,055.055853 J 
 1 kWh = 3.6 × 106 J 
 1 kcal = 4,168.8 J 

Next we list some “heat values” of fuels, namely the energy 
released when the fuels are burned in bomb calorimeters that 
retain all combustion products (thereby retrieving the latent heat 
of water released). 
 1 gallon of gasoline = 132 MJ 
 1 kg hydrogen = 120 MJ 
 1 kg methane (CH4) = 50 MJ 
 1 kg petroleum (any)  43 MJ 
 1 kg ethanol = 26.8 MJ 
 1 kg coal = 24 MJ (US util. average ) 
 1 kg drymatter  = 15 MJ 
 1 cubic foot natural gas = 1.09 MJ 

Solar sources can always be expressed in units of power per unit 
of land area.  These land areas are in common use. 
 1 acre  = 4047 m2 
 1 hectare (ha) = 104 m2 
 1 mi2  = 2.59 × 106 m2 
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